Download Les clefs pour l'X by Bernard Randé, Franck Taïeb PDF

By Bernard Randé, Franck Taïeb

L'ouvrage est constitué de sept chapitres qui distribuent un overall de one hundred forty four
exercices répartis selon leurs ressorts principaux : algèbre générale ; algèbre
linéaire et réduction; espaces euclidiens et géométrie; topologie et
fonctions de plusieurs variables ; suites, séries et examine élémentaire ; examine
fonctionnelle, suites et séries de fonctions ; intégration et équations
différentielles.
Les exercices ne sont pas classés selon leur difficulté. Chacun est constitué
d'un énoncé, auquel ont été parfois intégrées les symptoms de
l'examinateur rapportées par le candidat, et d'une resolution détaillée. Les
commentaires sont en italiques. Ils font état de remarques non intégrées au corrigé
et tentent de replacer l'exercice dans son contexte.

Show description

Read or Download Les clefs pour l'X PDF

Similar mathematics books

Extra info for Les clefs pour l'X

Sample text

55. Consider the space RN . Elements of RN are denoted by x = (x1 , . . , xN ), y = (y1 , . . , yN ), and so on. The norm on RN is defined by x − y = max1≤n≤N |xn − yn |. Let T : RN → RN defined by Tx = y where yk = N n=0 akn xn + bk , k = 1, . . , N. Under what conditions is T a contraction mapping ? 1 Introduction The main purpose of this book is to present basic methods and applications of Hilbert spaces. One of the most important examples of Hilbert spaces, from the point of view of both theory and applications, is the space of Lebesgue square integrable functions on RN .

Continuing this process, we construct an infinite matrix (xri rj ) such that xri rj < ε/2j+1 for all i such that i = j. In view of (b), (rj ) has a subsequence (sj ) such that limi→∞ Consider the matrix (xsi sj ). For every i ∈ N, we have ∞ j=1 xsi sj = 0. 5 Linear Mappings ∞ xsi sj = xsi si + j=1 xsi sj i=j ≥ xsi si − xsi sj i=j ≥ xsi si − xsi sj i=j ∞ j=1 xsi sj This, however, is impossible since limi→∞ proves the theorem. ε ≥ . 2 = 0. 13. (Banach–Steinhaus theorem) Let T be a family of bounded linear mappings from a Banach space X into a normed space Y .

Prove that lp is a proper vector subspace of lq whenever 1 ≤ p < q. 10. Show that any vector of R3 is a linear combination of vectors (1, 0, 0), (1, 1, 0), and (1, 1, 1). 11. Prove that every four vectors in R3 are linearly dependent. 12. Show that the functions fn (x) = xn , n = 0, 1, 2, . . , are linearly independent. 13. Show that the functions fn (x) = enx , n = 0, 1, 2, . . , are linearly independent. 14. Prove that spaces C ( ), C k (RN ), C ∞ (RN ) are infinite dimensional. 15. Denote by l0 the space of all infinite sequences of complex numbers (zn ) such that zn = 0 for all but a finite number of indices n.

Download PDF sample

Rated 4.87 of 5 – based on 27 votes